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Overall perspective

▷ When is a well-posed computer science/modeling problem solved?
▶ Intrinsic difficulty understood
▶ (Almost) Optimal algorithms available

▷ Strategy:

▶ Identify computationally tractable problems

▶ Approximability is the issue, not NP-hardness
▶ Develop efficient algorithms

▶ Bias on the geometric/combinatorial side
▶ Develop the corresponding software

▶ Software: large research instrument

▷ Structure, thermodynamics, kinetics: will these problems get solved ?



New perspectives on protein flexibility

Volumes of polytopes

Tripeptide Loop Closure (TLC)
TLC: background
TLC steric constraints
Loop sampling

Comparing energy lanscapes



Landscapes and thermodynamics
Density of states and partition functions

Dialanine

Ψ
Φ ▶ Potential energy:

Vtotal = Vbonded + (Vvdw + Velectro)

▷ Potential energy landscape:
V

δV

X

G(δV )

v0

v

▷ Density of states (DoS) for A ⊂ X :
▶ For any v0 < v :

G([v0, v ]) =

∫
A

1[v0,v ](V (x))dx

▷ Partition function for A ⊂ X from DoS:

ZA(T ) =

∫
A
e−βvdG(v)

▷ Nb: DoS calculation: volume calculation in phase space



Polytope volume calculations
▷ Problem statement: design effective algorithms to estimate the volume of
high dimensional polytopes (dim. ∈ [100 . . . 1000])
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▷ Unless P=NP: no polynomial
time algorithm with approx factor
(cd/ log d)d

▷ State-of-the-art: multi-phase Monte Carlo methods embarking
▶ Rounding procedures to put the polytope in isotropic position

▶ Random walks: ball-walk, hit-and-run, billiard walk

▶ Mixing times analysis – and heuristics for early stops

▷Ref: Cousins and Vempala, Math. Prog. Comp., 2016
▷Ref: Chalkis, Emiris, Fisikopoulos, arXiv:1905.05494, 2019
▷Ref: Chevallier et al, J. Computational Geometry, 2022
▷Ref: Chevallier et al, AISTATS, 2022



Volume of polytopes: hardness, randomized algorithms

▷ Hardness: no polynomial time algorithm with approx factor (cd/ log d)d –
unless P=NP

▷ ε-approximation of the volume: for any parameter ε > 0, a number V

(1 − ε)Vol(K) ≤ V ≤ (1 + ε)Vol(K).

▷ (ε, δ)-approximation algorithm: algorithm returning an ε-approximation with
a probability at least 1 − δ.

▷ Complexity, the O⋆(n)otation:
▶ O(d4): upper bound as a function of the dimension d

▶ O⋆(d4): term in log d , ε, δ removed; focus on the dimension solely

▷Ref: Cousins, Vempala, SIAM J. Comp., 2018



Random walk: hit-and-run
▷ Goal: sample point in K according to a prescribed density f

▷ (Random-direction) hit-and-run: random point xW after W steps
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▷ Iteratively:
▶ pick a random vector
▶ move to random point on the chord

l ∩ K , chosen from the distribution
induced by f on l

▷ Comments:
▶ risk of being trapped near a vertex
▶ large W helps forgetting the origin x0

▷ Thm (Berbee et al) The limit distribution induced by HR is uniform in K .

▷ Thm (Vempala et al) HR can be modified to sample an isotropic Gaussian
(restricted to K).

▷ Thm (Lovász) Let r and R denote the radii of the largest inscribed and
circumscribed balls for K . One sample generation: O⋆(d3).

▷ NB: precise statement in terms of total variation distance omitted
▷Ref: Berbee et al, Math. Prog., 1987
▷Ref: Lovász, Math. Prog. Ser. A, 1999
▷Ref: Lovász, Vempala, SIAM J Comp., 2006



Randomized algorithms: complexity

▷ Volume estimated using a sequence of isotropic Gaussians:

Vol(K) =

∫
K

f0(x)dx

∫
K
f1(x)dx∫

K
f0(x)dx

. . .

∫
K
dx∫

K
fm−1(x)dx

≡
∫
K

f0(x)dx
∏

i=1,...,m

Ri (1)

▷ Cooling schedule i.e. sequence of Gaussians f0, . . . , fm:
▶ f0: sharply peaked in K

▶ fm: uniform distribution i.e. am = 0

▷ Thm. For a convex body K given by a membership oracle, and such that
B ⊂ K ⊂ RB, an (ε, δ)− approximation can be obtained in time

O(
d4

ε2
log9 n

εδ
+ d4 log8 n

δ
logR) = O⋆(d4) (2)

▷Ref: Lovász, Vempala, J Comp. Syst. Sciences, 2006
▷Ref: Cousins, Vempala, SIAM J. Comp., 2018



A practical algorithm: outline
▷ Method:

▶ multi-phase Monte-Carlo using m = O(
√
d) logconcave functions

{f0, . . . , fm−1},

▶ fi (x) ∝ e−aTi x or fi (x) ∝ exp(−ai ∥x∥2)
▶ At each step: estimate rk ≈

∫
K fk (x)dx/

∫
K fk−1(x)dx

▷Ref: Cousins and Vempala, Math. Prog. Comp., 2016



Piecewise deterministic Markov processes (PDMP)
the non-reversible Bouncy Particle Sampler (BPS)

▷ Notations: state space (position, velocity): z = (x , v) ∈ E = Rd × Rd .

▷ PDMP zt : a continuous time
Markov process defined by:

1. a deterministic flow ϕt(z),

2. function determining the length
of steps: jump kernel λ(z)

3. a jump kernel in phase (x , v)
space: q(·|z)

▷ BPS: PDMP to sample a distribution π(x) in Rd using piecewise linear trajectories
bouncing on high energy level set surfaces

1. Linear trajectories: ϕt(x , v) = (x + tv , v),

2. Arrival time of 1D inhomogeneous Poisson process of intensity
λ(x , v) = max(0,−⟨∇x (log π)(x), v⟩),

3. q(·|z): reflection w.r.t. the gradient of the potential:

(x , v ′) =

(
x , v − 2

⟨v ,∇x (log π)(x)⟩
∥∇x (log π)(x)∥2 ∇x (log π)(x)

)
(3)

4. +Refresh of velocity to ensure ergodicity

▷Ref: Doucet et al, Stats. and probability letters, 136, 2018



Extension: BPS on a bounded domain – a polytope

▷ Three types of events:
▶ PDMP events: as usual
▶ Reflexions on the boundary

v ′ = v − 2
⟨n, v⟩
∥n∥2 n, (4)

▶ Refresh events: velocity
resampled from isotropic
normal distribution

▷ Numerics: lazy update of linear
algebra operations

▷ Example BPS trajectory in the 2d
cube [−1, 1]2:

Blue: PDMP jump events, Red:
reflections on the boundary, Green:
refresh events
Nb: π(x): Gaussian of variance
σ = 1.



PDMP to compute volumes of polytopes: experiments
▷ Complexity: C = O(dc ), dimension up to d = 250

▷ Protocol: find the smallest number of samples so that the estimated volume is
within err% from the exact value

▷ Linear regression in log log scale for the three polytopes:

Time Num. samples
model slope R2 slope R2

cube 3.77 0.96 1.94 0.88
∆iso 3.52 1.00 1.72 0.99
∆std 3.18 0.99 1.37 0.96



Computing volumes and DoS: outlook

▶ Polytopes: very efficient algorithms, provably correct

▶ Beyond polytopes: three classes of questions

▶ Designing cooling schedules
▶ Mixing times of RW – related to the conductance of the

Markov chains i.e. narrow passages
▶ Sample generation – beyond line-segments



Bibliography : volumes
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Geometric models: Cartesian and internal coordinates
▷ Cartesian versus internal coordinates: {xiyizi}i versus {dij , θijk , σijkl}

▷ Bond length and valence angle
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▷ Dihedral angles
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▷ Protein backbone
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H

i-th amino-acid

Ri

Ri−1
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Ramachandran diagram, per a.a. type:

▶ bivariate distribution for (ϕ, ψ)

▷ Side chain: 20 natural amino acids
Exple: Lysine, 4 dihedral angles
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χ2

χ3

χ4

LY S



Softness of Internal coordinates –force constants from CHARMM 36

Bonds: δdij ∼ .2Å : ∆V ∼ 20kcal/mol Valence angles: δθij ∼ 10◦ : ∆V ∼ 20kcal/mol

Torsion angles:∆V ∼ 3 − 4kcal/mol

Quadrature vs importance sampling
(Frenkel and Smit, 2002)

⇒ Dihedral angles are indeed soft coordinates



The Ramachandran diagrams
▷ Ramachandran diagrams and populated regions

CβNi+1

Cβ −Oi−1
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Oi−1 −O
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−π
−π

π
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▶ Main regions: αL, αR, βS , βP

▶ Three prototypical diagrams

▶ Glycine
▶ Proline
▶ Others – e.g. Aspartic

acid

▷ Distance constraints and the Ramachandran tetrahedron

Oi−1

Ci−1

N

Cα

C

Ni+1

H
Hα

O

Cβ

φ
ψ

Hi+1

C1 : Cβ −Oi−1 C2 : Cβ −O + CβNi+1

C3 : Oi−1 −O +Oi−1Ni+1

▷Ref: Stereochemistry of polypeptide chain configurations, JMB, 1963;
Ramachandran et al
▷Ref: Revisiting the Ramachandran plot, Protein Science, 2003; Ho et al



The Tripeptide loop closure – TLC
▷ TLC: for 3 amino acids, fix all internal coordinates BUT the (ϕi , ψi )i=1,2,3 angles

Cα;3

N1

C3

C1

N2

C2

Cα;2

Cα;1

C0

N4ψ2

φ1

φ2

φ3

ψ1

ψ3

N3

Five moving atomsLeft leg Right leg

Amino acid
(a.a.)

Amino acid
(a.a.) Amino acid

(a.a.)Peptide
bond

Peptide
bond

⇒ Find all possible values
(ϕi , ψi )i=1,2,3 compatible with the
fixed internal coordinates

▷ Theorem: at most 16 solutions

Cα1
Cα2
Cα3 Cα,1

Cα,2

Cα,3

3 consecutive a.a. 3 a.a. sandwiching SSE–CDRs

▷Ref: Go and Scheraga, Macromolecules, 1970
▷Ref: Coutsias et al, J. Comp. Chem., 2004



TLC model: from six to three angles

▷ Motions of the 3 rigid bodies: 6 angles

τi

τ2

τ0

σ1

σ2

σ0

Cα;2

C1

N1
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N3

Cα;3

C3

Cα;1
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(A) (B)
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Nb: indices mod(3), e.g., σ0 = σ3

Cα;2

C1

N1

C2

N2

Cα;3

C3

Cα;1

▷ . . . which are actually three

σi = τi + δi . (5)

Cα;i

Cα;i+1

Ci Ni+1

δi

Cα;i+1Ni+1CiCα;i

Cα;iCα;i+1

δi = ∠Plane(Cα;iCα;i+1Ci),Plane(Cα;iCα;i+1Ni+1)

▷ Key ingredients of TLC:
▶ Initially: six dihedral angles {(ϕ, ψ)}{i=1,2,3}

▶ Then: three pairs {δi , τi}
▶ Finally: three angles τi

▷ The valence angle constraints: the θi angles at the Cα;i s must remain
constant.
⇒ It is the coupling introduced by the θi angles onto the rotation angles τi
yields a degree 16 polynomial.
▷Ref: Coutsias et al, 2004



TLC with moving legs and embeddable tripeptides
▷ Geometric model:

▶ Tripeptide such that : left leg NiCα;i fixed, right leg Cα;i+2Ci+2 free to move
▶ Six dihdedral angles {ϕi , ψi} free

▷ Question: provide necessary conditions on the position of the first and last
segment–the legs, for the Tripeptide Loop Closure (TLC) algorithm to hold solutions.

▷ Nb: the relative position of legs suffices; in that case, position + orientation of
Cα;i+2Ci+2 yields a 5-dim search space.

Cα;1

Cα;3

N1

C3

r1 = 2

r2 = 2||Cα;2 − Cα;1||

Coordinates:

• Cα;1(0, 0, 0)

• N1(−||Cα;1 −N1||, 0, 0)

C1

N2

C2

Cα;2

x

y

z

Cα;3

N1

C3

C1

N2

C2

Cα;2

Cα;1



TLC: necessary conditions on the existence of solutions

▷ TLC problem for a tripeptide – say Tk : degree 16 polynomial parameterized
by 12 angles defining the space Ak = {αk,i , ηk,i , ξk,i−1, δk,i−1}, i ∈ {1, 2, 3}.

Cα;2
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N1

C2

N2

N3

Cα;3

C3

τ1

τ2

τ3Cα;1

σ1

σ2

σ3α1

η1

ξ1
Ak: 12 dimensional angular
space for the k-th tripeptide

Vk: necessary conditions for
TLCk to have solutions

Ak

Vk

▷ Contribution: necessary conditions for TLC to admit solutions
▶ Based on the 12 angles in Ak

▶ Defined by 24 hyper-surfaces in Ak

▶ These hyper-surfaces: curved walls for Hit-and-Run

▷Ref: O’Donnell, Cazals; J. Comp. Chem., 2023



Polytope volume calculations
▷ Problem statement: design effective algorithms to estimate the volume of
high dimensional polytopes (dim. ∈ [100 . . . 1000])
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▷ Unless P=NP: no polynomial
time algorithm with approx factor
(cd/ log d)d

▷ State-of-the-art: multi-phase Monte Carlo methods embarking
▶ Rounding procedures to put the polytope in isotropic position

▶ Random walks: ball-walk, hit-and-run, billiard walk

▶ Mixing times analysis – and heuristics for early stops

▷Ref: Cousins and Vempala, Math. Prog. Comp., 2016
▷Ref: Chalkis, Emiris, Fisikopoulos, arXiv:1905.05494, 2019
▷Ref: Chevallier et al, J. Computational Geometry, 2022
▷Ref: Chevallier et al, AISTATS, 2022



Global geometric model
▷ Loop studied L: M = 3 ×m amino, m tripeptides: L = T1, . . . ,Tm

▷ Loop decomposition: rigid peptide bodies and their complements

L = P0 T
′
1 P1 . . . Pk−1 T

′
k Pk . . . Pm−1T

′
mPm. (6)

T1

Pi: peptide body
between Ti and Ti+1

A4i−2

A4i−1

A4m−3

A4m−2
A4m−1

A4

A3

A2

A1

A4i−3

A4i+2

A4i+3

A4i+4

A4i A4mA4i+1

Fixed
Anchors

Fixed
Anchors

Tripeptide

Ti

Tripeptide

Ti+1

Tripeptide

Tm

Tripeptide

A4i : C1
A4i+1 : N2

A4i−1 : Cα;1
A4i+2 : Cα;2

▷ Parametric space:
▶ For one peptide body: SE(3) = SO(3)× R3

▶ For one tripeptide: solution space of TLC. . . except that
▶ The angular parameterization of TLC {α, ξ, η, δ}: depends on

SE(3)× SE(3) since the left and right legs come from Pi−1 and Pi−1



Loop sampling: spaces involved and solution sketch
▷ Loop decomposition into: rigid peptide bodies and tripeptides cores
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Peptide bodies: before rigid motions
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L =P0 T
′
1 P1 . . .

Pk T
′
k+1 Pk+1 . . .

Pm−1T
′
mPm.

▷ Random sampling of loop conformations using Hit-and-Run:

A: 12m dimensional angular
space for the m tripeptides

V: necessary conditions based
on validity intervals

S: solutions i.e. loop can be
embedded

M: 6(m − 1) dimensional
space for the motions of the
m− 1 peptide bodies

Fertile/valid

Sterile/Invalid

V: necessary conditions based
on validity intervals

A

S
V

F

F : Clash free solutions in S

▶ Aim: perform rejection
sampling in a region V
containing all valid loop
geometries.

▶ How: with Hit-and-Run
in a domain
characterizing necessary
conditions – cf validity
intervals



Loop sampling: spaces involved and solution sketch

▷ Global parameterization of the conformational space of the loop: based on rigid
bodies associated with peptide bonds

▶ M: motion space for the m − 1 peptide bodies, essentially (SE(3))m−1

▶ A: 12m-dimensional angular space coding the geometry of tripeptides
▶ V: domain bounded by hyper-surfaces corresponding to Validity Constraints

Necessary Constraints for TLC to admit solutions
▶ S: the fertile space, where TLC admits one solution for each tripeptide
▶ F : clash free solutions in S for {N,Cα,C ,O,Cβ} pairs

▷ Number of solutions:
∏

i (num solutions tripeptide i)

A: 12m dimensional angular
space for the m tripeptides

V: necessary conditions based
on validity intervals

S: solutions i.e. loop can be
embedded

M: 6(m − 1) dimensional
space for the motions of the
m− 1 peptide bodies

Fertile/valid

Sterile/Invalid

V: necessary conditions based
on validity intervals

A

S
V

F

F : Clash free solutions in S



Validity domain for the whole chain L with m tripeptides

▷ Angles τ : 3m angles τ (3 for each tripeptide)

▷ Recap per angle τ :
▶ For one angle: at most 4 Depth One Validity Intervals (DOVI)
▶ For each DOVI: 2 sub-manifolds of Ak defined by the previous equations;

yields (at most) 8 sub-manifolds in Ak .

▷ For one tripeptide: 3 τ angles ⇒ 24 constraint surfaces in the 12
dimensional angular space Ak .

▷ For the whole loop: total of 24m constraint surfaces.

A: 12m dimensional angular
space for the m tripeptides

V: necessary conditions based
on validity intervals

S: solutions i.e. loop can be
embedded

M: 6(m − 1) dimensional
space for the motions of the
m− 1 peptide bodies

Fertile/valid

Sterile/Invalid

V: necessary conditions based
on validity intervals

A

S
V

F

F : Clash free solutions in S



Algorithms and parameters

▷ Unmixed loop sampler ULSNV ;NOR
One|All ;NES

[p0]:

▶ One|All a flag indicating how many solutions are retained at each
embedding step,

▶ NES the number of embedding steps,
▶ NV the number of random trajectories followed in motion space,
▶ NOR the output rate (the number of steps in-between the ones where

conformations get harvested),
▶ p0: the starting configuration.

▷ Mixed loop sampler MLSNV ;NOR
One|All ;NES

[p0]: every other step, the loop is shifted
by 1 or 2 units to also sample the peptide bodies.



Loops sampling: ϕ, ψ and ω

▷ Typical values of the torsion angle ω:
▶ SSE?
▶ loops?



Loops sampling: ϕ, ψ and ω

▷ Typical values of the torsion angle ω:
▶ SSE? π ± 2 − 3◦

▶ loops? π ± 15◦
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Illustration: CDR-H3-HIV, 30 amino acids
▷ System:

▶ The loop is a complementarity-determining region (CDR-H3) from PG16, an
antibody with neutralization effect on HIV-1.

▶ pdbid: 3mme, chain A; residues: 93-100, 100A-100T, 101, 102.

Conformations generated by algorithm MLS1;1
One;250. (A) Variable domain (red) and

the 30 a.a. long CDR3. (B,C) Side/top view of 250 conformations.

▷ Generation speed: ∼ 10 conformations per second



Results: sampling and study of fluctuations

2.7Å

4.2Å

2.5Å 2.5Å

5Å

7Å
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7.6Å

Backbone RMSF (36 atoms) for the 12 amino acid long loop PTPN9-MEG2.



Bibliography : backbone move sets

T. O’Donnell, C.H. Robert, and F. Cazals.
Tripeptide loop closure: a detailed study of reconstructions based on
Ramachandran distributions.
Proteins: structure, function, and bioinformatics, 90(3):858–868, 2022.

T. O’Donnell, V. Agashe, and F. Cazals.
Geometric constraints within tripeptides and the existence of tripeptide
reconstructions.
J. Comp. Chem., 2023.

T. O’Donnell and F. Cazals.
Enhanced conformational exploration of protein loops using a global
parameterization of the backbone geometry.
J. Comp. Chem., 2023.



Outlook

▷ Key features:
▶ First global parametric model of protein loops amenable to effective

sampling strategies a-la Hit-and-Run

▶ Results: on par or better with state-of-the-art methods

▶ Atomic fluctuations along the loop
▶ Mutual reachability for existing conformations

▶ Insights on the intrinsic difficulty of the problem–via random walks and
curved polytopes

▷ Open problems:
▶ Uniformity of sampling (Theorem)
▶ Connexion to micro-canonical ensembles and densities of states
▶ Sampling with side chains



New perspectives on protein flexibility

Volumes of polytopes

Tripeptide Loop Closure (TLC)
TLC: background
TLC steric constraints
Loop sampling

Comparing energy lanscapes



Comparing (Sampled) Energy Landscapes: Motivation

▷ Comparing (sampled) landscapes:
– Assessing the coherence of two force2 fields for a given system (atomic, CG)
– Comparing two related systems: e.g. wild type/mutated proteins
– Comparing two simulations: different initial conditions and/or algorithms

E

C

E

C

s1 s2

d1 d2 d3 d4

▷ Idea: find a mapping between
basins considering

▶ the similarity between the
native states (one per basin)

▶ the coherence between the
volumes of the basins (their
probabilities)

▶ the connectivity between
basins

▷ Terminology: sampled (potential) energy landscape:
– portion revealed by a simulation
– given: minima, transitions between them, volumes of basins



Comparing Sets of Local Minima using a
Minimum Oriented Spanning Forest (MSF): method

▷ Given two sets of local minima and a distance metric to compare them:

each local minimum chooses its nearest neighbor
cf One-sided Hausdorff distance

E: landscape one

C

E: landscape two

C

r1 r2

c1 c2 c3 c4

r1

r3

c1

c2

c3

c4

r3

r2

NB: local minima

▶ all those discovered during
exploration

▶ persistent ones only
(remove ruggedness)

▷ Statistics:
– ave. weight of edges from the first landscape to the second one: wMSF

1→2
– ave. weight of edges from the second landscape to the first one: wMSF

2→1
▷ Remarks:

– can be combined with topological persistence
– algorithm, cf MST: Borůvka/ distributed Kruskal



Comparisons without Connectivity Constraints:
the Earth Mover Distance yields a Linear Program

▷ Consider two landscapes : PELs with ns basins, PELd with nd basins

E

C
s1 s2

s1 s2

d1 d2 d3 d4

PELs PELdE

C
d1 d2 d3 d4

(a) (b)

▷ Problem Earth-Mover-Distance (EMD):
find the transport plan of minimum cost, i.e. solution of the following linear program

LP


Cost: Min

∑
i=1,...,ns ,j=1,...,nd

fij × dC(si , dj )∑
i=1,...,ns fij = w

(d)
j ∀j ∈ 1, . . . , nd ,∑

j=1,...,nd
fij ≤ w

(s)
i ∀i ∈ 1, . . . , ns ,

fij ≥ 0 ∀i ∈ 1, . . . , ns , ∀j ∈ 1, . . . , nd

▷ Property: in OPT, the number of edges carrying flow is O(ns + nd − 1)
▷ Pros and cons:

– Information used: location of minima, weight of basins
– Linear program: solved in polynomial time
– Connectivity information not used

▷Ref: Chvátal, Linear programming, 1983; Rubner, Tomasi, Guibas, IJCV,
2000



Comparisons with Connectivity Constraints
▷ Earth Mover Distance: may violate the connectivity constraints

s1

s2

s3

s4

d1

d2

d3

d4

Landscape: source Landscape: demand

▷ Def: Transport plan with connectivity constraints: every connected subgraph
of PELs exports towards a connected subgraph of PELd

ýThere may exist an exponential number of connected subgraphs

▷ Problem EMD-CCC: maximum flow under constraints of
{maximum cost, connectivity constraints (and transport plan size M)}

▷ Complexity results
– Decision versions of EMD-CC and EMD-CCC: NP-complete
– Optimization version of EMD-CC is not in APX

If P ̸= NP: no polynomial algorithm with constant approx factor

▷ Algorithm Alg-EMD-CCC-G
– Greedy polynomial algorithm producing solutions i.e.

respecting the connectivity constraints and the max cost.
Complexity: O(n3m2), with n and m the num. vertices of the graphs
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The Structural Bioinformatics Library

▷ Pointers:
▶ Frontpage
▶ Applications
▶ Online doc

▷ Upates
▶ Conda channels for linux and macos
▶ Online demos for applications
▶ Next: plugins for VMD and pymol

▷Ref: Cazals and Dreyfus; Bioinformatics, 2016
▷Ref: Le Breton, Sarti, Cazals; In preparation

http://sbl.inria.fr
https://sbl.inria.fr/applications/
https://sbl.inria.fr/doc/
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