New perspectives on protein flexibility
High dimensional volumes and DoS
Move sets for polypeptide chains
Comparing energy landscapes

F. Cazals, Inria - Algorithms-Biology-Structure http://team.inria.fr/abs

3IA Côte d'Azur Axis 3

Overall perspective

\triangleright When is a well-posed computer science/modeling problem solved?

- Intrinsic difficulty understood
- (Almost) Optimal algorithms available
\triangleright Strategy:
- Identify computationally tractable problems
- Approximability is the issue, not NP-hardness
- Develop efficient algorithms
- Bias on the geometric/combinatorial side
- Develop the corresponding software
- Software: large research instrument
\triangleright Structure, thermodynamics, kinetics: will these problems get solved ?

New perspectives on protein flexibility

Volumes of polytopes

```
Tripeptide Loop Closure (TLC)
    TLC: background
    TLC steric constraints
    Loop sampling
```


Comparing energy lanscapes

Landscapes and thermodynamics

Density of states and partition functions
Dialanine

- Potential energy:

$$
V_{\text {total }}=V_{\text {bonded }}+\left(V_{\text {vdw }}+V_{\text {electro }}\right)
$$

\triangleright Potential energy landscape:

\triangleright Density of states (DoS) for $A \subset X$:

- For any $v_{0}<v$:

$$
G\left(\left[v_{0}, v\right]\right)=\int_{A} 1_{\left[v_{0}, v\right]}(V(x)) d x
$$

\triangleright Partition function for $A \subset X$ from DoS:

$$
Z_{A}(T)=\int_{A} e^{-\beta v} d G(v)
$$

$\triangleright \mathrm{Nb}$: DoS calculation: volume calculation in phase space

Polytope volume calculations

\triangleright Problem statement: design effective algorithms to estimate the volume of high dimensional polytopes (dim. $\in[100 \ldots$. 1000])

\triangleright Unless $\mathrm{P}=\mathrm{NP}$: no polynomial time algorithm with approx factor $(c d / \log d)^{d}$
\triangleright State-of-the-art: multi-phase Monte Carlo methods embarking

- Rounding procedures to put the polytope in isotropic position
- Random walks: ball-walk, hit-and-run, billiard walk
- Mixing times analysis - and heuristics for early stops

```
\trianglerightRef: Cousins and Vempala, Math. Prog. Comp., }201
Ref: Chalkis, Emiris, Fisikopoulos, arXiv:1905.05494, 2019
\trianglerightRef: Chevallier et al, J. Computational Geometry, 2022
Ref: Chevallier et al, AISTATS, 2022
```


Volume of polytopes: hardness, randomized algorithms

\triangleright Hardness: no polynomial time algorithm with approx factor $(c d / \log d)^{d}-$ unless $P=N P$
$\triangleright \varepsilon$-approximation of the volume: for any parameter $\varepsilon>0$, a number V

$$
(1-\varepsilon) \operatorname{Vol}(K) \leq V \leq(1+\varepsilon) \operatorname{Vol}(K)
$$

$\triangleright(\varepsilon, \delta)$-approximation algorithm: algorithm returning an ε-approximation with a probability at least $1-\delta$.
\triangleright Complexity, the $O^{\star}(n)$ otation:

- $O\left(d^{4}\right)$: upper bound as a function of the dimension d
$-O^{\star}\left(d^{4}\right)$: term in $\log d, \varepsilon, \delta$ removed; focus on the dimension solely
\triangleright Ref: Cousins, Vempala, SIAM J. Comp., 2018

Random walk: hit-and-run

\triangleright Goal: sample point in K according to a prescribed density f
\triangleright (Random-direction) hit-and-run: random point x_{W} after W steps

\triangleright Iteratively:

- pick a random vector
- move to random point on the chord $I \cap K$, chosen from the distribution induced by f on I
\triangleright Comments:
- risk of being trapped near a vertex
- large W helps forgetting the origin x_{0}
\triangleright Thm (Berbee et al) The limit distribution induced by HR is uniform in K.
\triangleright Thm (Vempala et al) HR can be modified to sample an isotropic Gaussian (restricted to K).
\triangleright Thm (Lovász) Let r and R denote the radii of the largest inscribed and circumscribed balls for K. One sample generation: $O^{\star}\left(d^{3}\right)$.
\triangleright NB: precise statement in terms of total variation distance omitted
\triangleright Ref: Berbee et al, Math. Prog., 1987
\triangleright Ref: Lovász, Math. Prog. Ser. A, 1999

Randomized algorithms: complexity

\triangleright Volume estimated using a sequence of isotropic Gaussians:

$$
\begin{equation*}
\operatorname{Vol}(K)=\int_{K} f_{0}(x) d x \frac{\int_{K} f_{1}(x) d x}{\int_{K} f_{0}(x) d x} \cdots \frac{\int_{K} d x}{\int_{K} f_{m-1}(x) d x} \equiv \int_{K} f_{0}(x) d x \prod_{i=1, \ldots, m} R_{i} \tag{1}
\end{equation*}
$$

\triangleright Cooling schedule i.e. sequence of Gaussians f_{0}, \ldots, f_{m} :

- f_{0} : sharply peaked in K
- f_{m} : uniform distribution i.e. $a_{m}=0$
\triangleright Thm. For a convex body K given by a membership oracle, and such that
$B \subset K \subset R B$, an (ε, δ) - approximation can be obtained in time

$$
\begin{equation*}
O\left(\frac{d^{4}}{\varepsilon^{2}} \log ^{9} \frac{n}{\varepsilon \delta}+d^{4} \log ^{8} \frac{n}{\delta} \log R\right)=O^{\star}\left(d^{4}\right) \tag{2}
\end{equation*}
$$

\triangleright Ref: Lovász, Vempala, J Comp. Syst. Sciences, 2006
\triangleright Ref: Cousins, Vempala, SIAM J. Comp., 2018

A practical algorithm: outline

\triangleright Method:

- multi-phase Monte-Carlo using $m=O(\sqrt{d})$ logconcave functions $\left\{f_{0}, \ldots, f_{m-1}\right\}$,
- $f_{i}(x) \propto e^{-a_{i}^{T} x}$ or $f_{i}(x) \propto \exp \left(-a_{i}\|x\|^{2}\right)$
- At each step: estimate $r_{k} \approx \int_{K} f_{k}(x) d x / \int_{K} f_{k-1}(x) d x$

```
\(\operatorname{Volume}(K, \varepsilon)\) : Convex body \(K\), error parameter \(\varepsilon\).
\(-T=\operatorname{Round}\left(\right.\) body: \(K\), steps: \(8 n^{3}\) ), set \(K^{\prime}=T \cdot K\).
- \(\left\{a_{0}, \ldots, a_{m}\right\}=\) GetAnnealingSchedule(body: \(K^{\prime}\) ).
- Set \(x\) to be random point from \(f_{0} \cap K^{\prime}, \varepsilon^{\prime}=\varepsilon / \sqrt{m}\).
- For \(i=1, \ldots, m\),
    - Set \(k=0, x_{0}=x\), converged \(=\) false, \(W=4 n^{2}+500\).
    - While converged \(=\) false,
            - \(k=k+1\).
            - \(x_{k}=\) HitAndRun(body: \(K\), target distribution: \(f_{i-1}\), current point: \(x_{k-1}\) ).
            - Set
                \(r_{k}=\frac{1}{k} \sum_{j=1}^{k} \frac{f_{i}\left(x_{j}\right)}{f_{i-1}\left(x_{j}\right)}\).
            - Set \(W_{\max }=\max \left\{r_{k-W+1}, \ldots, r_{k}\right\}\) and \(W_{\min }=\min \left\{r_{k-W+1}, \ldots, r_{k}\right\}\).
            - If \(W_{\text {max }}-W_{\text {min }} \leq \varepsilon^{\prime} / 2 \cdot W_{\text {max }} \rightarrow\) converged \(=\) true.
    - Set \(R_{i}=r_{k}, x=x_{k}\).
- Return volume \(=|T| \cdot\left(\pi / a_{0}\right)^{n / 2} \cdot R_{1} \ldots R_{m}\).
```

\triangleright Ref: Cousins and Vempala, Math. Prog. Comp., 2016

Piecewise deterministic Markov processes (PDMP)

the non-reversible Bouncy Particle Sampler (BPS)

\triangleright Notations: state space (position, velocity): $z=(x, v) \in E=\mathbb{R}^{d} \times \mathbb{R}^{d}$.
\triangleright PDMP z_{t} : a continuous time Markov process defined by:

1. a deterministic flow $\phi_{t}(z)$,
2. function determining the length of steps: jump kernel $\lambda(z)$
3. a jump kernel in phase (x, v)
space: $q(\cdot \mid z)$
\triangleright BPS: PDMP to sample a distribution $\pi(x)$ in \mathbb{R}^{d} using piecewise linear trajectories bouncing on high energy level set surfaces
4. Linear trajectories: $\phi_{t}(x, v)=(x+t v, v)$,
5. Arrival time of 1 D inhomogeneous Poisson process of intensity $\lambda(x, v)=\max \left(0,-\left\langle\nabla_{x}(\log \pi)(x), v\right\rangle\right)$,
6. $q(\cdot \mid z)$: reflection w.r.t. the gradient of the potential:

$$
\begin{equation*}
\left(x, v^{\prime}\right)=\left(x, v-2 \frac{\left\langle v, \nabla_{x}(\log \pi)(x)\right\rangle}{\left\|\nabla_{x}(\log \pi)(x)\right\|^{2}} \nabla_{x}(\log \pi)(x)\right) \tag{3}
\end{equation*}
$$

4. +Refresh of velocity to ensure ergodicity
\triangleright Ref: Doucet et al, Stats. and probability letters, 136, 2018

Extension: BPS on a bounded domain - a polytope

\triangleright Example BPS trajectory in the 2d cube $[-1,1]^{2}$:
\triangleright Three types of events:

- PDMP events: as usual
- Reflexions on the boundary

$$
\begin{equation*}
v^{\prime}=v-2 \frac{\langle n, v\rangle}{\|n\|^{2}} n \tag{4}
\end{equation*}
$$

- Refresh events: velocity resampled from isotropic normal distribution
\triangleright Numerics: lazy update of linear algebra operations

Blue: PDMP jump events, Red: reflections on the boundary, Green:
refresh events
$\mathrm{Nb}: \pi(x)$: Gaussian of variance
$\sigma=1$.

PDMP to compute volumes of polytopes: experiments

\triangleright Complexity: $\quad C=O\left(d^{c}\right)$, dimension up to $d=250$
\triangleright Protocol: find the smallest number of samples so that the estimated volume is within err\% from the exact value

\triangleright Linear regression in $\log \log$ scale for the three polytopes:

	Time		Num. samples	
model	slope	R^{2}	slope	R^{2}
cube	3.77	0.96	1.94	0.88
$\Delta_{\text {iso }}$	3.52	1.00	1.72	0.99
$\Delta_{\text {std }}$	3.18	0.99	1.37	0.96

Computing volumes and DoS: outlook

- Polytopes: very efficient algorithms, provably correct
- Beyond polytopes: three classes of questions
- Designing cooling schedules
- Mixing times of RW - related to the conductance of the Markov chains i.e. narrow passages
- Sample generation - beyond line-segments

Bibliography: volumes

目
A. Chevallier, F. Cazals, and P. Fearnhead.

Efficient computation of the the volume of a polytope in high-dimensions using piecewise deterministic markov processes.
In AISTATS, 2022.
國 A. Chevallier, S. Pion, and F. Cazals.
Improved polytope volume calculations based on Hamiltonian Monte Carlo with boundary reflections and sweet arithmetics.
J. of Computational Geometry, 13(1):55-88, 2022.
A. Chevallier and F. Cazals.

Wang-Landau algorithm: an adapted random walk to boost convergence.
J. of Computational Physics, 410(1):1-19, 2020.

New perspectives on protein flexibility

Volumes of polytopes

Tripeptide Loop Closure (TLC)
TLC: background
TLC steric constraints
Loop sampling

Comparing energy lanscapes

Geometric models: Cartesian and internal coordinates

\triangleright Cartesian versus internal coordinates: $\left\{x_{i} y_{i} z_{i}\right\}_{i}$ versus $\left\{d_{i j}, \theta_{i j k}, \sigma_{i j k l}\right\}$
\triangleright Bond length and valence angle
(A)

(B)

\triangleright Dihedral angles

(B)

\triangle Protein backbone

Ramachandran diagram, per a.a. type:
\triangleright Side chain: 20 natural amino acids Exple: Lysine, 4 dihedral angles

- bivariate distribution for (ϕ, ψ)

LYS

Softness of Internal coordinates -force constants from снавмм 36

Bonds: $\delta d_{i j} \sim .2 \AA: \Delta V \sim 20 \mathrm{kcal} / \mathrm{mol}$

Torsion angles: $\Delta V \sim 3-4 \mathrm{kcal} / \mathrm{mol}$

Valence angles: $\delta \theta_{i j} \sim 10^{\circ}: \Delta V \sim 20 \mathrm{kcal} / \mathrm{mol}$

Quadrature vs importance sampling (Frenkel and Smit, 2002)
\Rightarrow Dihedral angles are indeed soft coordinates

The Ramachandran diagrams

\triangleright Ramachandran diagrams and populated regions

- Main regions: $\alpha L, \alpha R, \beta S, \beta P$
- Three prototypical diagrams
- Glycine
- Proline
- Others - e.g. Aspartic acid
\triangleright Distance constraints and the Ramachandran tetrahedron
$C 1: C_{\beta}-O_{i-1} \quad C 2: C_{\beta}-O+C_{\beta} N_{i+1}$ C3: $O_{i-1}-O+O_{i-1} N_{i+1}$

\triangleright Ref: Stereochemistry of polypeptide chain configurations, JMB, 1963;
Ramachandran et al
\triangleright Ref: Revisiting the Ramachandran plot, Protein Science, 2003; Ho et al

The Tripeptide loop closure - TLC

\triangleright TLC: for 3 amino acids, fix all internal coordinates BUT the $\left(\phi_{i}, \psi_{i}\right)_{i=1,2,3}$ angles

\triangleright Theorem: at most 16 solutions

3 consecutive a.a.
\Rightarrow Find all possible values
$\left(\phi_{i}, \psi_{i}\right)_{i=1,2,3}$ compatible with the fixed internal coordinates

3 a.a. sandwiching SSE-CDRs
\triangleright Ref: Gō and Scheraga, Macromolecules, 1970
\triangleright Ref: Coutsias et al, J. Comp. Chem., 2004

TLC model: from six to three angles

\triangleright Motions of the 3 rigid bodies: 6 angles

Nb : indices $\bmod (3)$, e.g., $\sigma_{0}=\sigma_{3}$
$\triangleright \ldots$ which are actually three

$$
\begin{equation*}
\sigma_{i}=\tau_{i}+\delta_{i} \tag{5}
\end{equation*}
$$

$\delta_{i}=\angle \operatorname{Plane}\left(C_{\alpha ; i} C_{\alpha ; i+1} C_{i}\right)$, Plane $\left(C_{\alpha ; i} C_{\alpha ; i+1} N_{i+1}\right)$
\triangleright Key ingredients of TLC:

- Initially: six dihedral angles $\{(\phi, \psi)\}_{\{i=1,2,3\}}$
- Then: three pairs $\left\{\delta_{i}, \tau_{i}\right\}$
- Finally: three angles τ_{i}
\triangleright The valence angle constraints: the θ_{i} angles at the $C_{\alpha ; i}$ s must remain constant.
\Rightarrow It is the coupling introduced by the θ_{i} angles onto the rotation angles τ_{i} yields a degree 16 polynomial.
\triangleright Ref: Coutsias et al, 2004

TLC with moving legs and embeddable tripeptides

\triangleright Geometric model:

- Tripeptide such that: left leg $N_{i} C_{\alpha ; i}$ fixed, right leg $C_{\alpha ; i+2} C_{i+2}$ free to move
- Six dihdedral angles $\left\{\phi_{i}, \psi_{i}\right\}$ free
\triangleright Question: provide necessary conditions on the position of the first and last segment-the legs, for the Tripeptide Loop Closure (TLC) algorithm to hold solutions. $\triangleright \mathrm{Nb}$: the relative position of legs suffices; in that case, position + orientation of $C_{\alpha ; i+2} C_{i+2}$ yields a 5 -dim search space.

TLC: necessary conditions on the existence of solutions

\triangleright TLC problem for a tripeptide - say T_{k} : degree 16 polynomial parameterized by 12 angles defining the space $\mathcal{A}_{k}=\left\{\alpha_{k, i}, \eta_{k, i}, \xi_{k, i-1}, \delta_{k, i-1}\right\}, i \in\{1,2,3\}$.

\triangleright Contribution: necessary conditions for TLC to admit solutions

- Based on the 12 angles in \mathcal{A}_{k}
- Defined by 24 hyper-surfaces in \mathcal{A}_{k}
- These hyper-surfaces: curved walls for Hit-and-Run
\triangleright Ref: O'Donnell, Cazals; J. Comp. Chem., 2023

Polytope volume calculations

\triangleright Problem statement: design effective algorithms to estimate the volume of high dimensional polytopes (dim. $\in[100 \ldots$. 1000])

\triangleright Unless $\mathrm{P}=\mathrm{NP}$: no polynomial time algorithm with approx factor $(c d / \log d)^{d}$
\triangleright State-of-the-art: multi-phase Monte Carlo methods embarking

- Rounding procedures to put the polytope in isotropic position
- Random walks: ball-walk, hit-and-run, billiard walk
- Mixing times analysis - and heuristics for early stops

```
\trianglerightRef: Cousins and Vempala, Math. Prog. Comp., }201
Ref: Chalkis, Emiris, Fisikopoulos, arXiv:1905.05494, 2019
\trianglerightRef: Chevallier et al, J. Computational Geometry, 2022
Ref: Chevallier et al, AISTATS, 2022
```


Global geometric model

\triangleright Loop studied L : $M=3 \times m$ amino, m tripeptides: $L=T_{1}, \ldots, T_{m}$
\triangleright Loop decomposition: rigid peptide bodies and their complements

$$
\begin{equation*}
L=P_{0} T_{1}^{\prime} P_{1} \ldots P_{k-1} T_{k}^{\prime} P_{k} \ldots P_{m-1} T_{m}^{\prime} P_{m} \tag{6}
\end{equation*}
$$

\triangleright Parametric space:

- For one peptide body: $S E(3)=S O(3) \times \mathbb{R}^{3}$
- For one tripeptide: solution space of TLC. .. except that
- The angular parameterization of $\operatorname{TLC}\{\alpha, \xi, \eta, \delta\}$: depends on $S E(3) \times S E(3)$ since the left and right legs come from P_{i-1} and P_{i-1}

Loop sampling: spaces involved and solution sketch

\triangleright Loop decomposition into: rigid peptide bodies and tripeptides cores

$$
\begin{aligned}
L= & P_{0} T_{1}^{\prime} P_{1} \ldots \\
& P_{k} T_{k+1}^{\prime} P_{k+1} \ldots \\
& P_{m-1} T_{m}^{\prime} P_{m} .
\end{aligned}
$$

\triangleright Random sampling of loop conformations using Hit-and-Run:

- Aim: perform rejection sampling in a region \mathcal{V} containing all valid loop geometries.
- How: with Hit-and-Run in a domain characterizing necessary conditions - cf validity intervals

Loop sampling: spaces involved and solution sketch

\triangleright Global parameterization of the conformational space of the loop: based on rigid bodies associated with peptide bonds

- \mathcal{M} : motion space for the $m-1$ peptide bodies, essentially $(S E(3))^{m-1}$
- A: 12m-dimensional angular space coding the geometry of tripeptides
- \mathcal{V} : domain bounded by hyper-surfaces corresponding to Validity Constraints Necessary Constraints for TLC to admit solutions
- \mathcal{S} : the fertile space, where TLC admits one solution for each tripeptide
- \mathcal{F} : clash free solutions in \mathcal{S} for $\left\{N, C_{\alpha}, C, O, C_{\beta}\right\}$ pairs
\triangleright Number of solutions: $\prod_{i}($ num solutions tripeptide $i)$

Validity domain for the whole chain L with m tripeptides

\triangleright Angles τ : $3 m$ angles τ (3 for each tripeptide)
\triangleright Recap per angle τ :

- For one angle: at most 4 Depth One Validity Intervals (DOVI)
- For each DOVI: 2 sub-manifolds of \mathcal{A}_{k} defined by the previous equations; yields (at most) 8 sub-manifolds in \mathcal{A}_{k}.
\triangleright For one tripeptide: 3τ angles $\Rightarrow 24$ constraint surfaces in the 12 dimensional angular space \mathcal{A}_{k}.
\triangleright For the whole loop: total of $24 m$ constraint surfaces.

Algorithms and parameters

\triangleright Unmixed loop sampler ULS ${ }_{\text {One|All; } N_{E S}}^{N_{V} ; N_{O R}}\left[p_{0}\right]$:

- One \mid All a flag indicating how many solutions are retained at each embedding step,
- $N_{E S}$ the number of embedding steps,
- N_{V} the number of random trajectories followed in motion space,
- $N_{O R}$ the output rate (the number of steps in-between the ones where conformations get harvested),
- p_{0} : the starting configuration.
\triangleright Mixed loop sampler $\mathbb{M L L} \mathbb{S}_{\text {One } \mid \text { All } ; N_{E S}}^{N_{V} ; N_{O R}}\left[p_{0}\right]$: every other step, the loop is shifted by 1 or 2 units to also sample the peptide bodies.

Loops sampling: ϕ, ψ and ω

\triangleright Typical values of the torsion angle ω :

- SSE?
- loops?

Loops sampling: ϕ, ψ and ω

\triangleright Typical values of the torsion angle ω :

- SSE? $\pi \pm 2-3^{\circ}$
- loops? $\pi \pm 15^{\circ}$

Illustration: CDR-H3-HIV, 30 amino acids

\triangleright System:

- The loop is a complementarity-determining region (CDR-H3) from PG16, an antibody with neutralization effect on HIV-1.
- pdbid: 3mme, chain A; residues: 93-100, 100A-100T, 101, 102.

Conformations generated by algorithm $\mathbb{M L} \mathbb{S}^{1 ; 1}$ the 30 a.a. long CDR3. (B,C) Side/top view of 250 conformations.
\triangleright Generation speed: ~ 10 conformations per second

Results: sampling and study of fluctuations

Backbone RMSF (36 atoms) for the 12 amino acid long loop PTPN9-MEG2.

Bibliography: backbone move sets

國 T. O'Donnell, C.H. Robert, and F. Cazals.
Tripeptide loop closure: a detailed study of reconstructions based on Ramachandran distributions.
Proteins: structure, function, and bioinformatics, 90(3):858-868, 2022.
T. O'Donnell, V. Agashe, and F. Cazals.

Geometric constraints within tripeptides and the existence of tripeptide reconstructions.
J. Comp. Chem., 2023.
T. O'Donnell and F. Cazals.

Enhanced conformational exploration of protein loops using a global parameterization of the backbone geometry.
J. Comp. Chem., 2023.

Outlook

\triangleright Key features:

- First global parametric model of protein loops amenable to effective sampling strategies a-la Hit-and-Run
- Results: on par or better with state-of-the-art methods
- Atomic fluctuations along the loop
- Mutual reachability for existing conformations
- Insights on the intrinsic difficulty of the problem-via random walks and curved polytopes
\triangleright Open problems:
- Uniformity of sampling (Theorem)
- Connexion to micro-canonical ensembles and densities of states
- Sampling with side chains

New perspectives on protein flexibility

Volumes of polytopes

Comparing energy lanscapes

Comparing (Sampled) Energy Landscapes: Motivation

\triangleright Comparing (sampled) landscapes:

- Assessing the coherence of two force2 fields for a given system (atomic, CG)
- Comparing two related systems: e.g. wild type/mutated proteins
- Comparing two simulations: different initial conditions and/or algorithms

\triangleright Idea: find a mapping between basins considering
- the similarity between the native states (one per basin)
- the coherence between the volumes of the basins (their probabilities)
- the connectivity between basins
\triangleright Terminology: sampled (potential) energy landscape:
- portion revealed by a simulation
- given: minima, transitions between them, volumes of basins

Comparing Sets of Local Minima using a

Minimum Oriented Spanning Forest (MSF): method
\triangleright Given two sets of local minima and a distance metric to compare them: each local minimum chooses its nearest neighbor cf One-sided Hausdorff distance

NB: local minima

- all those discovered during exploration
- persistent ones only (remove ruggedness)
\triangleright Statistics:
- ave. weight of edges from the first landscape to the second one: $\bar{w}_{1 \rightarrow 2}^{M S F}$
- ave. weight of edges from the second landscape to the first one: $\bar{w}_{2 \rightarrow 1}^{\text {MSF }}$
\triangleright Remarks:
- can be combined with topological persistence
- algorithm, of MST: Borůvka/ distributed Kruskal

Comparisons without Connectivity Constraints:

the Earth Mover Distance yields a Linear Program

\triangleright Consider two landscapes: PEL_{s} with n_{s} basins, PEL_{d} with n_{d} basins
(a)

(b)

\triangleright Problem Earth-Mover-Distance (EMD):
find the transport plan of minimum cost, i.e. solution of the following linear program

$$
L P \begin{cases}\text { Cost: } \operatorname{Min} \sum_{i=1, \ldots, n_{s}, j=1, \ldots, n_{d}} f_{i j} \times d_{\mathcal{C}}\left(s_{i}, d_{j}\right) & \\ \sum_{i=1, \ldots, n_{s}} f_{i j}=w_{j}^{(d)} & \forall j \in 1, \ldots, n_{d} \\ \sum_{j=1, \ldots, n_{d}} f_{i j} \leq w_{i}^{(s)} & \forall i \in 1, \ldots, n_{s} \\ f_{i j} \geq 0 & \forall i \in 1, \ldots, n_{s}, \forall j \in 1, \ldots, n_{d}\end{cases}
$$

\triangleright Property: in OPT, the number of edges carrying flow is $O\left(n_{s}+n_{d}-1\right)$
\triangleright Pros and cons:

- Information used: location of minima, weight of basins
- Linear program: solved in polynomial time
- Connectivity information not used
\triangleright Ref: Chvátal, Linear programming, 1983; Rubner, Tomasi, Guibas, IJCV, 2000

Comparisons with Connectivity Constraints

\triangleright Earth Mover Distance: may violate the connectivity constraints
Landscape: source

\triangleright Def: Transport plan with connectivity constraints: every connected subgraph of PEL_{s} exports towards a connected subgraph of $\mathrm{P} E L_{d}$

* There may exist an exponential number of connected subgraphs
\triangleright Problem EMD-CCC: maximum flow under constraints of
\{maximum cost, connectivity constraints (and transport plan size M) \}
\triangleright Complexity results
- Decision versions of EMD-CC and EMD-CCC: NP-complete
- Optimization version of EMD-CC is not in APX

If $P \neq N P$: no polynomial algorithm with constant approx factor
\triangleright Algorithm Alg-EMD-CCC-G

- Greedy polynomial algorithm producing solutions i.e.
respecting the connectivity constraints and the max cost.
Complexity: $O\left(n^{3} m^{2}\right)$, with n and m the num. vertices of the graphs

Bibliography: comparing landscapes

F. Cazals, T. Dreyfus, D. Mazauric, A. Roth, and C.H. Robert.

Conformational ensembles and sampled energy landscapes: Analysis and comparison.
J. Comp. Chem., 36(16):1213-1231, 2015.

罡 J. Carr, D. Mazauric, F. Cazals, and D. J. Wales.
Energy landscapes and persistent minima.
The Journal of Chemical Physics, 144(5):4, 2016.
國 F. Cazals and D. Mazauric.
Mass transportation problems with connectivity constraints, with applications to energy landscapes comparison.
Technical Report 8611, Inria, 2016.

The Structural Bioinformatics Library

Why adopt the SBL ?

For Biologists:

For Developers:

- IrnatConprithn tootbra

Reference:

modelive in bavoreraler idince and hiyons
Stewtrie Carale Ton Drevtie
Bicntinmatio 2017)

+ vinitas
\triangleright Pointers:
- Frontpage
- Applications
- Online doc
\triangleright Upates
- Conda channels for linux and macos
- Online demos for applications
- Next: plugins for VMD and pymol

Acknowledgments

\triangleright Collaborators

- Dorian Mazauric, Timothee Of Onnell (Inria)
- Augustin Chevallier (Univ. Lancaster)

Edoardo Sarti and Côme Le Breton (Inria)
7) Charles Robert (CNRS IPBC)

- Juan Cortés (CNRS LAAS)

An David Wales, (Cambridge University)
maser-

B|A Côted $\mathrm{d}^{2}=1 \mathrm{Hr}+2 \mathrm{~m}$

