New perspectives on protein flexibility High dimensional volumes and DoS Move sets for polypeptide chains Comparing energy landscapes

F. Cazals, Inria – Algorithms-Biology-Structure http://team.inria.fr/abs

3IA Côte d'Azur Axis 3

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Overall perspective

▷ When is a well-posed computer science/modeling problem solved?

- Intrinsic difficulty understood
- (Almost) Optimal algorithms available
- Strategy:
 - Identify computationally tractable problems
 - Approximability is the issue, not NP-hardness
 - Develop efficient algorithms
 - Bias on the geometric/combinatorial side
 - Develop the corresponding software
 - Software: large research instrument
- Structure, thermodynamics, kinetics: will these problems get solved ?

New perspectives on protein flexibility

Volumes of polytopes

Tripeptide Loop Closure (TLC) TLC: background TLC steric constraints Loop sampling

Comparing energy lanscapes

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Landscapes and thermodynamics

Density of states and partition functions

Potential energy:

$$V_{\rm total} = V_{\rm bonded} + (V_{
m vdw} + V_{
m electro})$$

Potential energy landscape:

- ▷ Density of states (DoS) for $A \subset X$:
 - For any $v_0 < v$:

$$G([v_0, v]) = \int_A \mathbb{1}_{[v_0, v]}(V(x)) dx$$

▷ Partition function for $A \subset X$ from DoS:

$$Z_A(T) = \int_A e^{-\beta v} dG(v)$$

Polytope volume calculations

▷ Problem statement: design effective algorithms to estimate the volume of high dimensional polytopes (dim. \in [100...1000])

▷ Unless P=NP: no polynomial time algorithm with approx factor $(cd/\log d)^d$

State-of-the-art: multi-phase Monte Carlo methods embarking

- Rounding procedures to put the polytope in isotropic position
- Random walks: ball-walk, hit-and-run, billiard walk
 - Mixing times analysis and heuristics for early stops
- ▷Ref: Cousins and Vempala, Math. Prog. Comp., 2016
- ▷Ref: Chalkis, Emiris, Fisikopoulos, arXiv:1905.05494, 2019
- ▷Ref: Chevallier et al, J. Computational Geometry, 2022
- ▷Ref: Chevallier et al, AISTATS, 2022

Volume of polytopes: hardness, randomized algorithms

▷ Hardness: no polynomial time algorithm with approx factor $(cd/\log d)^d$ – unless P=NP

 $\triangleright \varepsilon$ -approximation of the volume: for any parameter $\varepsilon > 0$, a number V

$$(1-\varepsilon)\operatorname{Vol}(K) \leq V \leq (1+\varepsilon)\operatorname{Vol}(K).$$

 \triangleright (ε , δ)-approximation algorithm: algorithm returning an ε -approximation with a probability at least $1 - \delta$.

▷ Complexity, the $O^*(n)$ otation:

- $O(d^4)$: upper bound as a function of the dimension d
- $O^*(d^4)$: term in log d, ε, δ removed; focus on the dimension solely

▷Ref: Cousins, Vempala, SIAM J. Comp., 2018

Random walk: hit-and-run

- \triangleright Goal: sample point in K according to a prescribed density f
- \triangleright (Random-direction) hit-and-run: random point x_W after W steps

▶ Iteratively:

- pick a random vector
- ► move to random point on the chord *I* ∩ *K*, chosen from the distribution induced by *f* on *I*

▶ Comments:

- risk of being trapped near a vertex
- large W helps forgetting the origin x₀

 \triangleright Thm (Berbee et al) The limit distribution induced by HR is uniform in K.

 \triangleright Thm (Vempala et al) HR can be modified to sample an isotropic Gaussian (restricted to K).

▷ Thm (Lovász) Let r and R denote the radii of the largest inscribed and circumscribed balls for K. One sample generation: $O^*(d^3)$.

▷ NB: precise statement in terms of total variation distance omitted

- ▷Ref: Berbee et al, Math. Prog., 1987
- ▷Ref: Lovász, Math. Prog. Ser. A, 1999

Randomized algorithms: complexity

▷ Volume estimated using a sequence of isotropic Gaussians:

$$\operatorname{Vol}(K) = \int_{K} f_{0}(x) dx \frac{\int_{K} f_{1}(x) dx}{\int_{K} f_{0}(x) dx} \dots \frac{\int_{K} dx}{\int_{K} f_{m-1}(x) dx} \equiv \int_{K} f_{0}(x) dx \prod_{i=1,\dots,m} R_{i} \quad (1)$$

▷ Cooling schedule i.e. sequence of Gaussians f_0, \ldots, f_m :

- f₀: sharply peaked in K
- f_m : uniform distribution i.e. $a_m = 0$

▷ Thm. For a convex body K given by a membership oracle, and such that $B \subset K \subset RB$, an (ε, δ) - approximation can be obtained in time

$$O(\frac{d^4}{\varepsilon^2}\log^9\frac{n}{\varepsilon\delta} + d^4\log^8\frac{n}{\delta}\log R) = O^*(d^4)$$
(2)

▷Ref: Lovász, Vempala, J Comp. Syst. Sciences, 2006
 ▷Ref: Cousins, Vempala, SIAM J. Comp., 2018

A practical algorithm: outline

Method:

multi-phase Monte-Carlo using m = O(√d) logconcave functions {f₀,..., f_{m-1}},
 f_i(x) ∝ e^{-a_i^Tx} or f_i(x) ∝ exp(-a_i ||x||²)

• At each step: estimate $r_k \approx \int_K f_k(x) dx / \int_K f_{k-1}(x) dx$

Volume (K, ε) : Convex body K, error parameter ε . $-T = \mathbf{Round}(\mathrm{body}; K, \mathrm{steps}; 8n^3), \mathrm{set} K' = T \cdot K.$ $- \{a_0, \ldots, a_m\} =$ **GetAnnealingSchedule**(body: K'). - Set x to be random point from $f_0 \cap K'$, $\varepsilon' = \varepsilon / \sqrt{m}$. - For $i = 1, \ldots, m$, - Set $k = 0, x_0 = x$, converged = false, $W = 4n^2 + 500$. - While converged = false, • k = k + 1. • $x_k = \text{HitAndRun}(\text{body: } K, \text{ target distribution: } f_{i-1}, \text{ current point: } x_{k-1}).$ • Set $r_k = \frac{1}{k} \sum_{j=1}^{k} \frac{f_i(x_j)}{f_{i-1}(x_i)}.$ • Set $W_{max} = \max\{r_{k-W+1}, \dots, r_k\}$ and $W_{min} = \min\{r_{k-W+1}, \dots, r_k\}$. • If $W_{max} - W_{min} \leq \varepsilon'/2 \cdot W_{max} \rightarrow converged = true.$ - Set $R_i = r_k, x = x_k$. - Return volume = $|T| \cdot (\pi/a_0)^{n/2} \cdot R_1 \dots R_m$.

Piecewise deterministic Markov processes (PDMP)

the non-reversible Bouncy Particle Sampler (BPS)

▷ Notations: state space (position, velocity): $z = (x, v) \in E = \mathbb{R}^d \times \mathbb{R}^d$.

▷ PDMP z_t: a continuous time Markov process defined by:

- 1. a deterministic flow $\phi_t(z)$,
- 2. function determining the length of steps: jump kernel $\lambda(z)$
- 3. a jump kernel in phase (x, v)space: $q(\cdot|z)$

▷ BPS: PDMP to sample a distribution $\pi(x)$ in \mathbb{R}^d using piecewise linear trajectories bouncing on high energy level set surfaces

- 1. Linear trajectories: $\phi_t(x, v) = (x + tv, v)$,
- Arrival time of 1D inhomogeneous Poisson process of intensity λ(x, ν) = max(0, -⟨∇_x(log π)(x), ν⟩),
- 3. $q(\cdot|z)$: reflection w.r.t. the gradient of the potential:

$$(x, v') = \left(x, v - 2\frac{\langle v, \nabla_x(\log \pi)(x) \rangle}{\|\nabla_x(\log \pi)(x)\|^2} \nabla_x(\log \pi)(x)\right)$$
(3)

4. +Refresh of velocity to ensure ergodicity

Extension: BPS on a bounded domain – a polytope

Three types of events:

- PDMP events: as usual
- Reflexions on the boundary

$$\mathbf{v}' = \mathbf{v} - 2 \frac{\langle n, \mathbf{v} \rangle}{\|n\|^2} n,$$
 (4)

 Refresh events: velocity resampled from isotropic normal distribution

▷ Numerics: lazy update of linear algebra operations

Example BPS trajectory in the 2d cube $[-1, 1]^2$:

Blue: PDMP jump events, Red: reflections on the boundary, Green: refresh events Nb: $\pi(x)$: Gaussian of variance $\sigma = 1$.

PDMP to compute volumes of polytopes: experiments

▷ Complexity: $C = O(d^c)$, dimension up to d = 250

▷ Protocol: find the smallest number of samples so that the estimated volume is within *err*% from the exact value

▶ Linear regression in log log scale for the three polytopes:

	Time		Num. samples	
model	slope	R^2	slope	R^2
cube	3.77	0.96	1.94	0.88
Δ_{iso}	3.52	1.00	1.72	0.99
Δ_{std}	3.18	0.99	1.37	0.96

Computing volumes and DoS: outlook

- Polytopes: very efficient algorithms, provably correct
- Beyond polytopes: three classes of questions
 - Designing cooling schedules
 - Mixing times of RW related to the conductance of the Markov chains i.e. narrow passages

Sample generation – beyond line-segments

Bibliography : volumes

A. Chevallier, F. Cazals, and P. Fearnhead.

Efficient computation of the the volume of a polytope in high-dimensions using piecewise deterministic markov processes.

In AISTATS, 2022.

A. Chevallier, S. Pion, and F. Cazals.

Improved polytope volume calculations based on Hamiltonian Monte Carlo with boundary reflections and sweet arithmetics.

J. of Computational Geometry, 13(1):55-88, 2022.

A. Chevallier and F. Cazals.

Wang-Landau algorithm: an adapted random walk to boost convergence.

J. of Computational Physics, 410(1):1–19, 2020.

New perspectives on protein flexibility

Volumes of polytopes

Tripeptide Loop Closure (TLC)

TLC: background TLC steric constraints Loop sampling

Comparing energy lanscapes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Geometric models: Cartesian and internal coordinates

- ▷ Cartesian versus internal coordinates: $\{x_i y_i z_i\}_i$ versus $\{d_{ij}, \theta_{ijk}, \sigma_{ijkl}\}$

Bond length and valence angle

Ramachandran diagram, per a.a. type:

bivariate distribution for (ϕ, ψ)

Side chain: 20 natural amino acids Exple: Lysine, 4 dihedral angles

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Softness of Internal coordinates --force constants from CHARMM 36

Bonds: $\delta d_{ij} \sim .2$ Å : $\Delta V \sim 20$ kcal/mol

Torsion angles: $\Delta V \sim 3 - 4kcal/mol$

Valence angles: $\delta \theta_{ij} \sim 10^\circ$: $\Delta V \sim 20$ kcal/mol

Quadrature vs importance sampling (Frenkel and Smit, 2002)

 \Rightarrow Dihedral angles are indeed *soft* coordinates

The Ramachandran diagrams

Ramachandran diagrams and populated regions

- Main regions: $\alpha L, \alpha R, \beta S, \beta P$
- Three prototypical diagrams
 - Glycine
 - Proline
 - Others e.g. Aspartic acid

Distance constraints and the Ramachandran tetrahedron

 $\begin{array}{ll} C1: C_{\beta} - O_{i-1} & C2: C_{\beta} - O + C_{\beta}N_{i+1} \\ & C3: O_{i-1} - O + O_{i-1}N_{i+1} \end{array}$

▷Ref: Stereochemistry of polypeptide chain configurations, JMB, 1963; Ramachandran et al

▷Ref: Revisiting the Ramachandran plot, Protein Science, 2003; Ho et al

The Tripeptide loop closure – TLC

▷ TLC: for 3 amino acids, fix all internal coordinates BUT the $(\phi_i, \psi_i)_{i=1,2,3}$ angles

 \Rightarrow Find all possible values $(\phi_i, \psi_i)_{i=1,2,3}$ compatible with the fixed internal coordinates

3 consecutive a.a.

3 a.a. sandwiching SSE-CDRs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ▷Ref: Go and Scheraga, Macromolecules, 1970
- ▷Ref: Coutsias et al, J. Comp. Chem., 2004

TLC model: from six to three angles

▶ Key ingredients of TLC:

- Initially: six dihedral angles $\{(\phi, \psi)\}_{\{i=1,2,3\}}$
- Then: three pairs $\{\delta_i, \tau_i\}$
- Finally: three angles τ_i

▷ The valence angle constraints: the θ_i angles at the $C_{\alpha;i}$ s must remain constant.

 \Rightarrow It is the coupling introduced by the θ_i angles onto the rotation angles τ_i yields a degree 16 polynomial.

▷Ref: Coutsias et al, 2004

TLC with moving legs and embeddable tripeptides

Geometric model:

- ▶ Tripeptide such that : left leg $N_i C_{\alpha;i}$ fixed, right leg $C_{\alpha;i+2} C_{i+2}$ free to move
- Six dihdedral angles $\{\phi_i, \psi_i\}$ free

▷ Question: provide necessary conditions on the position of the first and last segment—the legs, for the Tripeptide Loop Closure (TLC) algorithm to hold solutions. ▷ Nb: the relative position of legs suffices; in that case, position + orientation of $C_{\alpha;i+2}C_{i+2}$ yields a 5-dim search space.

TLC: necessary conditions on the existence of solutions

▷ TLC problem for a tripeptide – say T_k : degree 16 polynomial parameterized by 12 angles defining the space $A_k = \{\alpha_{k,i}, \eta_{k,i}, \xi_{k,i-1}, \delta_{k,i-1}\}, i \in \{1, 2, 3\}.$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Contribution: necessary conditions for TLC to admit solutions

- Based on the 12 angles in A_k
- Defined by 24 hyper-surfaces in A_k
- These hyper-surfaces: curved walls for Hit-and-Run

```
▷Ref: O'Donnell, Cazals; J. Comp. Chem., 2023
```

Polytope volume calculations

▷ Problem statement: design effective algorithms to estimate the volume of high dimensional polytopes (dim. \in [100...1000])

▷ Unless P=NP: no polynomial time algorithm with approx factor $(cd/\log d)^d$

State-of-the-art: multi-phase Monte Carlo methods embarking

- Rounding procedures to put the polytope in isotropic position
- Random walks: ball-walk, hit-and-run, billiard walk
 - Mixing times analysis and heuristics for early stops
- ▷Ref: Cousins and Vempala, Math. Prog. Comp., 2016
- ▷Ref: Chalkis, Emiris, Fisikopoulos, arXiv:1905.05494, 2019
- ▷Ref: Chevallier et al, J. Computational Geometry, 2022
- ▷Ref: Chevallier et al, AISTATS, 2022

Global geometric model

▷ Loop studied *L*: $M = 3 \times m$ amino, *m* tripeptides: $L = T_1, \ldots, T_m$

Loop decomposition: rigid peptide bodies and their complements

$$L = P_0 T_1' P_1 \dots P_{k-1} T_k' P_k \dots P_{m-1} T_m' P_m.$$
 (6)

Parametric space:

- For one peptide body: $SE(3) = SO(3) \times \mathbb{R}^3$
- For one tripeptide: solution space of TLC...except that
 - The angular parameterization of TLC $\{\alpha, \xi, \eta, \delta\}$: depends on $SE(3) \times SE(3)$ since the left and right legs come from P_{i-1} and P_{i-1} .

Loop sampling: spaces involved and solution sketch

Loop decomposition into: rigid peptide bodies and tripeptides cores

 $L = P_0 T_1' P_1 \dots$ $P_k T'_{k+1} P_{k+1} \dots$ $P_{m-1}T_{m}'P_{m}$

▶ Random sampling of loop conformations using Hit-and-Run:

- Aim: perform rejection sampling in a region V containing all valid loop geometries.
- How: with Hit-and-Run in a domain characterizing necessary conditions – cf validity intervals

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Loop sampling: spaces involved and solution sketch

▷ Global parameterization of the conformational space of the loop: based on rigid bodies associated with peptide bonds

- \mathcal{M} : motion space for the m-1 peptide bodies, essentially $(SE(3))^{m-1}$
- A: 12*m*-dimensional angular space coding the geometry of tripeptides
- V: domain bounded by hyper-surfaces corresponding to Validity Constraints Necessary Constraints for TLC to admit solutions
- S: the fertile space, where TLC admits one solution for each tripeptide
- \mathcal{F} : clash free solutions in \mathcal{S} for $\{N, C_{\alpha}, C, O, C_{\beta}\}$ pairs

▷ Number of solutions: \prod_i (num solutions tripeptide *i*)

Validity domain for the whole chain L with m tripeptides

▷ Angles τ : 3*m* angles τ (3 for each tripeptide)

 \triangleright Recap per angle τ :

- For one angle: at most 4 Depth One Validity Intervals (DOVI)
- For each DOVI: 2 sub-manifolds of A_k defined by the previous equations; yields (at most) 8 sub-manifolds in A_k.

▷ For one tripeptide: 3τ angles $\Rightarrow 24$ constraint surfaces in the 12 dimensional angular space A_k .

▶ For the whole loop: total of 24*m* constraint surfaces.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Algorithms and parameters

▷ Unmixed loop sampler ULS^{*N*_V;*N*_{OR}_{One|All;*N*_{FS}}[*p*₀]:}

- One|All a flag indicating how many solutions are retained at each embedding step,
- ► *N_{ES}* the number of embedding steps,
- \triangleright N_V the number of random trajectories followed in motion space,
- N_{OR} the output rate (the number of steps in-between the ones where conformations get harvested),
- *p*₀: the starting configuration.

Loops sampling: ϕ, ψ and ω

\triangleright Typical values of the torsion angle ω :

- SSE?
- loops?

Loops sampling: ϕ,ψ and ω

 \triangleright Typical values of the torsion angle ω :

SSE?
$$\pi \pm 2 - 3^{\circ}$$

 \blacktriangleright loops? $\pi \pm 15^{\circ}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Illustration: CDR-H3-HIV, 30 amino acids

▷ System:

- The loop is a complementarity-determining region (CDR-H3) from PG16, an antibody with neutralization effect on HIV-1.
- pdbid: 3mme, chain A; residues: 93-100, 100A-100T, 101, 102.

Conformations generated by algorithm $\mathbb{MLS}_{One;250}^{1;1}$. (A) Variable domain (red) and the 30 a.a. long CDR3. (B,C) Side/top view of 250 conformations.

 \triangleright Generation speed: $~\sim$ 10 conformations per second

Results: sampling and study of fluctuations

Backbone RMSF (36 atoms) for the 12 amino acid long loop PTPN9-MEG2.

|▲■▶ ▲ヨ▶ ▲ヨ▶ | ヨ | のへの

Bibliography : backbone move sets

T. O'Donnell, C.H. Robert, and F. Cazals.

Tripeptide loop closure: a detailed study of reconstructions based on Ramachandran distributions.

Proteins: structure, function, and bioinformatics, 90(3):858-868, 2022.

T. O'Donnell, V. Agashe, and F. Cazals.

Geometric constraints within tripeptides and the existence of tripeptide reconstructions.

J. Comp. Chem., 2023.

T. O'Donnell and F. Cazals.

Enhanced conformational exploration of protein loops using a global parameterization of the backbone geometry.

J. Comp. Chem., 2023.

Outlook

▶ Key features:

- First global parametric model of protein loops amenable to effective sampling strategies a-la Hit-and-Run
- Results: on par or better with state-of-the-art methods
 - Atomic fluctuations along the loop
 - Mutual reachability for existing conformations
- Insights on the intrinsic difficulty of the problem-via random walks and curved polytopes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Open problems:

- Uniformity of sampling (Theorem)
- Connexion to micro-canonical ensembles and densities of states
- Sampling with side chains

New perspectives on protein flexibility

Volumes of polytopes

Tripeptide Loop Closure (TLC) TLC: background TLC steric constraints Loop sampling

Comparing energy lanscapes

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Comparing (Sampled) Energy Landscapes: Motivation

Comparing (sampled) landscapes:

- Assessing the coherence of two force2 fields for a given system (atomic, CG)
- Comparing two related systems: e.g. wild type/mutated proteins
- Comparing two simulations: different initial conditions and/or algorithms

Idea: find a mapping between basins considering

- the similarity between the native states (one per basin)
- the coherence between the volumes of the basins (their probabilities)
- the connectivity between basins

Terminology: sampled (potential) energy landscape:

- portion revealed by a simulation
- given: minima, transitions between them, volumes of basins

Comparing Sets of Local Minima using a Minimum Oriented Spanning Forest (MSF): method

▷ Given two sets of local minima and a distance metric to compare them:

each local minimum chooses its nearest neighbor cf One-sided Hausdorff distance

NB: local minima

- all those discovered during exploration
- persistent ones only (remove ruggedness)

Statistics:

- ave. weight of edges from the first landscape to the second one: \overline{w}
- ave. weight of edges from the second landscape to the first one: \overline{w}

Remarks:

- can be combined with topological persistence
- algorithm, cf MST: Borůvka/ distributed Kruskal

Comparisons without Connectivity Constraints: the Earth Mover Distance yields a Linear Program

 \triangleright Consider two landscapes : PEL_s with n_s basins, PEL_d with n_d basins

Problem Earth-Mover-Distance (EMD):

find the transport plan of minimum cost, i.e. solution of the following linear program

$$LP \begin{cases} \text{Cost: } \min \sum_{i=1,...,n_{s}, j=1,...,n_{d}} f_{ij} \times d_{\mathcal{C}}(s_{i}, d_{j}) \\ \sum_{i=1,...,n_{s}} f_{ij} = w_{j}^{(d)} & \forall j \in 1,...,n_{d}, \\ \sum_{j=1,...,n_{d}} f_{ij} \le w_{i}^{(s)} & \forall i \in 1,...,n_{s}, \\ f_{ij} \ge 0 & \forall i \in 1,...,n_{s}, \forall j \in 1,...,n_{d} \end{cases}$$

▷ Property: in OPT, the number of edges carrying flow is $O(n_s + n_d - 1)$ ▷ Pros and cons:

- Information used: location of minima, weight of basins
- Linear program: solved in polynomial time
- Connectivity information not used

▷Ref: Chvátal, Linear programming, 1983; Rubner, Tomasi, Guibas, IJCV, 2000

Comparisons with Connectivity Constraints

▷ Earth Mover Distance: may violate the connectivity constraints

<u>Problem EMD-CCC</u>: maximum flow under constraints of {maximum cost, connectivity constraints (and transport plan size *M*)}

Complexity results

- Decision versions of EMD-CC and EMD-CCC: NP-complete
- Optimization version of EMD-CC is not in APX If $P \neq NP$: no polynomial algorithm with constant approx factor

Algorithm Alg-EMD-CCC-G

- Greedy polynomial algorithm producing solutions i.e. respecting the connectivity constraints and the max cost. Complexity: $O(n^3m^2)$, with *n* and *m* the num. vertices of the graphs

Bibliography : comparing landscapes

F. Cazals, T. Dreyfus, D. Mazauric, A. Roth, and C.H. Robert. Conformational ensembles and sampled energy landscapes: Analysis and

comparison.

J. Comp. Chem., 36(16):1213-1231, 2015.

J. Carr, D. Mazauric, F. Cazals, and D. J. Wales. Energy landscapes and persistent minima. *The Journal of Chemical Physics*, 144(5):4, 2016.

F. Cazals and D. Mazauric.

Mass transportation problems with connectivity constraints, with applications to energy landscapes comparison.

Technical Report 8611, Inria, 2016.

The Structural Bioinformatics Library

Pointers:

- Frontpage
- Applications
- Online doc

Upates

- Conda channels for linux and macos
- Online demos for applications
- Next: plugins for VMD and pymol

э

- ▷Ref: Cazals and Dreyfus; Bioinformatics, 2016
- DRef: Le Breton, Sarti, Cazals; In preparation

Acknowledgments

Collaborators

- Dorian Mazauric, Timothee O'Donnell (Inria
- Augustin Chevallier (Univ. Lancaster)
- 🕨 Edoardo Sarti and Côme Le Breton (Inria
- Charles Robert (CNRS IPBC)
 - Juan Cortés (CNRS LAAS)

Université Côte d'Azur

- David Wales (Cambridge University)
- Inria
- 3IA Côte d'Azur