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Research interest and motivation

Problem setting

- We can use the energy landscapes approach to study ML
just like molecules

- Energy function = loss function

- ML minimises loss function to find best parameters to
explain relationship between data (X) and outcome (y)

Why use energy landscapes? 2 central questions in ML:

- Can we explain ML better (move away from ‘black-box’)?

- Can we improve learning (faster and/or more accurate)?
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Loss landscapes for ML

Current state of research in ML-LLs

- Not too many people look into LFLs for ML in general

- ML practitioners use standard python packages (PyTorch)

- Single minimisation, find one minimum, done
- Surprisingly works well, and is much faster than computing
whole LFL

- Fast, easy to use, yet hard to explain why it works

(Selected) related work

- Loss landscapes have been used to:

- Study optimisation methods [1, 2]
- Explain why single minimum is often sufficient [3–5]
- Improve accuracy [1, 6, 7]
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Machine Learning methods

Neural networks

- Standard ML method

- Learn parameters for complex non-linear function

- Network architecture: design choice

- Number and depth of layers

Gaussian Processes

- Non-parametric Bayesian ML

- Learn hyperparameters for covariance kernel

- Allows construction of confidence interval around
prediction

- Scales O(n3) for n datapoints
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GP details

Bayes theorem allows

µ(x∗) = Σx∗,x(Σx,x + σ2I)−1y

σ2(x∗) = Σx∗,x∗ −Σx∗,x(Σx,x + σ2I)−1Σx,x∗

(1)

for new (test) datapoint x∗.

Loss function

log p(y|X , θ) = −1

2
y⊺Σ−1y− 1

2
log |Σ| − n

2
log 2π, (2)

Matern kernel

kij = σ2 1

Γ(ν)2ν−1

(√
2ν

ℓ
d (xi, xj)

)ν

Kν

(√
2ν

ℓ
d (xi, xj)

)
(3)
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Energy Landscapes vs Loss Landscapes

Landscape characteristics:

Feature molecular PES ML LL

energy potential energy loss value
temperature physical temperature fictitious parameter
coordinates atomistic coordinates weights/hyperparameters
local minimum locally-stable molecular isomer locally optimal weights

global minimum
energetically most

favourable molecular isomer
best weights for

given loss function

Landscape metrics:

Feature molecular PES ML LL

basin volume
entropic contribution

to occupation probability
connection to robustness

heat capacity
change in occupied minima
as a function of temperature

identification of minima
with complementary properties
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Schwefel function and GP fits

f(x) = 418.9829d−
∑d

i=1 xi sin
√
|xi|
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GP loss landscapes exhibit interesting structures

Catastrophe theory:

(a) (b)

Figure 2: Loss landscape fold catastrophes illustrated in
disconnectivity graphs. Each leaf node of the graphs is a minimum in
hyperparameter space Θ. The disappearance of minima from
ν=2.1 → ν=2.0 (a) and ν=3.5 → ν=3.4 (b) corresponds to a
reduction in the number of leaf nodes.
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GP loss landscapes exhibit interesting structures II

ν-continuity
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Figure 3: Loss value (-lml) (a) and mean squared error (b) for all
identified minima at all values of ν. k-means clustering is performed
on the minima, where k is chosen to be the maximum number of
minima at any ν. The data shown here were obtained from the 3d
Schwefel function.
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GP ensembles

Ensembles

- 2 heads are better than one

- Commonly used approach in ML field

- Combine multiple, orthogonal predictors for improved
accuracy

Landscape ensembles

- Don’t rerun same model from different initialisations

- Exploit multi-funneled landscapes and use unique minima

- Avoid single point estimate for solution
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GP ensembles substantially improve accuracy
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Figure 4: Percentage improvement over single best minimum of GP
ensembles for fitting the (a) 3d and (b) 4d Schwefel function for
various parameterisations of ν.
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How can landscapes make GP learning more Bayesian

Hyperparameter sampling

- Single-point estimates are not Bayesian

- SPE is standard practice for SGD optimisation

- Bayesian treatment would be sampling hyperparameters
from distribution

- Current methods use HMC: extremely show and expensive

Landscape approach

- Look at landscape to decide whether to run HMC?

- Or sample from reconstructed landscape?

- Perhaps only useful if multi-funneled?
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Ensemble effectiveness increases when landscape has more minima
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Figure 5: Correlation between MSE improvement achieved by
ensemble methods and the number of minima in a loss landscape.
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Conserved weights can help to interpret ML

- Identify conserved weights
between groups of minima

- Are conserved weights those
that are relevant to
classification?

- Changing conserved weights
seems to suggest that (accuracy
decreases)
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ML loss landscapes exhibit interesting properties and are not well
explored

Landscapes and ML

- Various analogies between ELs and ML-LLs

- Methods can be used to improve interpretability and
accuracy

- ML-LLs exhibit various interesting properties

- Understanding loss landscape crucial to understand system

- → Learn why machine learning works so well

Future work

- Reconstruct landscapes for fully Bayesian treatment

- Identify further analogies between ELs and ML-LLs
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