

Exploring RNA energy landscapes

Samuela Pasquali

Physics Professor

Laboratoire Biologie Fonctionnelle et Adaptative, Molecular modeling and drug design team School of Pharmacy and School of Science

Structural Polymorphism

A given sequence can adopt multiple alternative structures, not just flexibility

а

S1

Role of modeling

dynamics, thermodynamics, influence of the environment

Modeling

this is not a cow

this is not a cow either

Real life is messy Pragmatic and greedy approach

Use multiple models at different resolutions Use different sampling methods Mix and match Talk to experimentalists! Make the model as close as possible to experiments

RNA structural features

Physical modeling (how dirty do you want to get?)

Atomistic description (explicit or implicit solvent)

$$egin{aligned} V(r^N) &= \sum_{ ext{bonds}} k_b (l-l_0)^2 + \sum_{ ext{angles}} k_a (heta - heta_0)^2 \ &+ \sum_{ ext{torsions}} \sum_n rac{1}{2} V_n [1 + \cos(n \omega - \gamma)] + \sum_{j=1}^{N-1} \sum_{i=j+1}^N f_{ij} \Big\{ \epsilon_{ij} \Big[\Big(rac{r_{0ij}}{r_{ij}}\Big)^{12} - 2 \Big(rac{r_{0ij}}{r_{ij}}\Big)^6 \Big] + rac{q_i q_j}{4 \pi \epsilon_0 r_{ij}} \Big\} \end{aligned}$$

Coarse-graining

and more ...

Roeder, Stirnemann, Faccioli, Pasquali, QRB Discovery 2022

Ups and downs

H-REX

Full Solvation Only solute is affected by the energy rescaling Use standard force fields

Need multiple copies of the system (~30) Can deal only with small systems (~few dozens nt)

rMD

\mathbf{V}

Full Solvation Use standard force fields Good statistics on folding trajectories

Knowledge of native state required Cannot study alternative foldings in a single MD

DPS

Sample widely the conformational space Allows to define "families" of structures (basins) Allow to obtain kinetic data

X

Implicit solvent Can deal only with small systems (~few dozens nt) Hard time with entropy

CG models

Allow to study larger systems for longer time scales Allow to highlight essential elements of the system description

Loss of atomistic details Implicit solvent No generally recognized model

Combining strategies: DPS + REST2 REX

REST2 (24 H-replicas)

Explicit solvent: interactions with water and ions, solvation effects full entropy contribution.

Slow convergence, expensive calculations, limited exploration of new conformations

Triple helix folding: CG-MD + rMD

Coarse-grained RNA modeling: HiRE-RNA

 $E_{\rm BP} = E_{\rm HB} \times E_{\rm plane}$

Pasquali, Derreumaux, JPCB 2010 Cragnolini, Derreumaux, Pasquali, JCTC 2015

Base pairing

~150 different experimentally accounted interactions 1, 2 or 3 HB per pair

Stacking

Semi-sequence dependent parameters : purine-purine, purine-pyrimidine, pyrimidine-pyrimidine

> 200 parameters

Force field optimization

Comparison of atomistic and CG energy landscapes → optimize to match energy differences

Can we use EL comparisons also to assess the quality of atomistic force-fields?

Generalized landscapes

Discrete variables Continuous variables mutations, chemical modifications Temperature, pH, ionic conditions... methylation UUUUGCCAAUCCUGGAGCCAGGACUGUUGCCGGCUUCCAUGGUA 0.0 -180.0 ° $10.0\,\mathrm{kcal\,mol^{-1}}$

Generalized landscapes

Discrete variables mutations, chemical modifications

$$w_{TK} \approx \frac{e^2}{8\pi\epsilon_0\epsilon_r} \sum_{i>j}^{N_p} \left(\frac{z_i z_j}{r_{ij}} - \frac{Z_p^2 \kappa}{2(1+\kappa b)} \right) \pm (pH - pK_a)$$
Texeira, Lund, Barroso da Silva, JCTC, 2010
Fast MC protonation scheme

Continuous variables Temperature, pH, ionic conditions...

Pasquali, Frezza, Barroso da Silva, Interface Focus (2019)

Including experimental data and experimental conditions

Experimental data restricts the conformational space to be explored

- What does the experiment actually measure?
- Is it possible to compute the outcome from hypothetical structures?
- Can we bias simulations based on this account?

