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Real time counterparts of quasistatic processes
may be analyzed as a sequence of relaxations.

Given a path, set stages along path.
Then iterate: Equilibrate to the next stage.

For small stages, dissipated work in move
= (distance moved)?/2




Horse-Carrot Theorem (1983)
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L = thermodynamic length of path
K = number of equilibrations




The Ladder Theorem (2017)

Adding a new relaxation step by braking one relaxation into two
relaxations, always decreases the dissipation, provided only that the
inserted state be somewhere in-between the start and end points of
the relaxation being divided.
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Steppingstone states

We say that a state R is in-between two states P and () provided the two-
step relaxation P — R followed by R — () produces less entropy than the one
step relaxation P — Q).

Gain = ASpo — ASpr — AShg

Recall that for small relaxations, dissipation is half the distance squared.



L%+ L,%<L?

L 4

L=2*radius

Relaxing first toward any
point inside sphere
decreases dissipation
N, .
~ - '

" em gy o



Realizations at Many Levels

* Metabolic pathways

* Macro Thermodynamic states
e Statistical Thermodynamics

* Quantum Mechanics

* Exponential Family



Realizations at Many Levels
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Red region = steppingstone states for a
relaxation in an ideal gas

Karl Heinz Hoffmann visiting San Diego this spring gave
a beautiful one hour talk two days after hearing of the
topic.




Realizations at Many Levels

e Statistical Thermodynamics
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Grey region = steppingstone states for a
relaxation in a three level system

Also KHH graphics



Realizations at Many Levels

e Quantum Mechanics

Pink region = steppingstone states for
relaxation in a qubit

Graphics by Roie Dann



Realized at many levels due to the geometry

* Hessian Geometry

* Semi-Riemannian metric from the second derivative of a
function

* Dual flat coordinates connected by Legendre transforms

* extensive € -2 intensive
* p <2 In(p)

Gain= KL(p,q) — KL(p,r) — KL(r,q) = Y (p; — ;) log(ri/q:)

1

(Vi — Vo) % (p2 — p3) + (N1 — Na) * (2 — p3) + (S1 — S2) * (T2 — T3)
(V17 Nl) Sl) — (V37 N37 SS)



Take-home lesson:

*Adding substeps to a relaxation reduces
its dissipation.

*A substep can use any in-between state.

*This defined in-between states, i.e.,
steppingstones.



